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PROGRAM STRUCTURE FOR MILITARY REAL-TIME SYSTEMS 

ABSTRACT 

This report describes the program design and accompanying tools 
required to fabricate an initial operational program which is subject 
to change through use and as a result of changes in the environment 
of the system.    Major design decisions are shown to have little 
relation to the programming language that is chosen for the statement 
of the logical data transformation to be implemented by the final 
program.    The actual coding required for performing the logical 
transformations turns out to be a relatively small part of the overall 
design job.    The choice of the programming language to be used is 
just an initial decision in the process of selecting adequate tools for 
assisting the production and modification of real-time programs. 
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PROGRAM STRUCTURE FOR MILITARY REAL-TIME SYSTEMS 

SECTION I 

INTRODUCTION 

At the present time a great deal of attention is being devoted to program- 

ming languages and their relative effectiveness in performing the logical 

transformations required in data-processing tasks.    In fact,  so much emphasis 

is being given to such languages that there is a danger that program design 

will be construed as being merely a matter of choosing and applying the 

appropriate programming language for each job.    Actually, there is much more 

involved. 

One of the most important problems in program design is that of logistics. 

The data must be made available to the machine at the right time and in the 

right sequence.    It is a fact that, for a large problem, the logistics involved 

in the machine processing of data becomes much greater and much more 

critical than the logical problem of transformation of data.    There are many 

mathematicians who can tell you in what sequence to add certain numbers 

together and what logical processes to carry out to get a certain answer.    But 

making a computer accomplish a desired data manipulation is much more 

complicated.    There are, for example, the problems of getting the raw data 

into the machine,  of storing partially finished calculations,  and of making the 

machine perform the required data transformations.    Furthermore,  in the 

operation of a data-processing job, the machine's memory gets loaded with 

programs,  and,  when you have a large,  complex job, these programs won't 

all fit in the storage space available.    This is one of the most serious problems 

encountered in machine problem-solving. 



It is characteristic of all the significant problems associated with the 

military that the whole program never fits the machine.    Therefore, we must 

somehow break up the job into individual tasks.    When we have done this, we 

must determine what data these tasks require and what data they produce, 

structure the data in some way compatible with them, determine the sequence 

of running the tasks, and allocate storage.    Then we have not only the problem 

of allocating the main computer storage, but also the problems of storing the 

intermediate results,  the data not yet required,  and the subprograms not in 

use, and of scheduling the flow for the total processing. 



SECTION II 

TASK AREAS 

To illustrate this point,  a hypothetical programming-design job is broken 

into six tasks areas, labelled A-F in Fig.   1.    Let us, for the moment,  skip the 

problem of how to divide an overall processing task into subprograms.    For one 

thing,  the rationale for such a split will not be entirely clear until we have seen 

the effects that different decisions at this point have upon later decisions. 

Furthermore,  each breakdown depends upon the content of the total processing 

required,  which,  for this report,  is discussed in abstract terms only.    The 

point here is that,  no matter how we divide the overall processing job into sub- 

programs,  such a breakdown is necessarily a vital step in developing a design 

that will enable us to proceed with the programming of the individual tasks. 

A B c D E F 

1 / >/ 

2 y y 
3 • y 
4 y y 

NFORMATION 5/ y y 
ITEMS 6 y 

7 y y 
8 y y 
9 • y 
10 y y 
II y y 
12/ y y 

Fig.  1    Tasks or Subprograms 



Let us now consider the data elements that are to be processed in our 

example.    In addition to knowing what data elements are involved in the total 

job, it is essential to know which are needed and/or produced by each task area. 

The matrix of information items for the present example is shown in Fig.  1. 

The information items are grouped on the basis of natural association by 

the point of view outside the computer.    For example, Items 1-4 might be 

information about airfields.    Therefore, although these items may be stored in 

separate parts of the computer memory, they are logically associated from the 

outside point of view.    In their operation, the individual tasks either require or 

produce the information items checked in Fig.  1.    Therefore, while each sub- 

program is running, the data associated with it must be in the main computer 

store, for if information is needed, it must be available, and if it is to be 

produced, there must be local space saved for it.    The matrix shown in Fig.  1 

represents a relatively simple program.    In actual programs the picture is 

often much bigger.    In the SAGE program breakdown, for example, there were 

some 70 task areas and over 2, 000 data elements. 

The information in the matrix has several interesting features.    For 

instance, we can see that Information Items 1 and 3 are needed by Subprograms 

A and B but not by C,  D,  E, or F.    So, internally, Items 1 and 3 are associated. 

In other words, from an internal point of view,  all of the information items 

required or produced by a task area are associated.    We might want to group 

these internally associated items of information and treat them as a unit.    That 

is,  we might want to arrange it so that, whenever we move Item 1 into or out of 

the main computer storage, we shall also move in or out Item 3.    For example, 

we might wish to group the internally associated items as shown in Fig. 2. 

Here we see Items 1 and 3 grouped together as Table I, Items 2 and 4 as 

Table II, Items 5 and 6 as Table III, Items 8 and 9 as Table IV, Item 10 as 

Table V,  and Items 11 and 12 as Table VI. 



A B c D E F 

i y y 
2 y y 
3/ y 
4 y y 

INFORMATION 5/ y y 
ITEMS 6 y 

7 y y 
s y y 
9 y y 
10 y y 
II y y 
12/ • y 

TABLES 

I» 1,3 
0 = 2,4 
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2-= 10 
SI' II, 12 

Fig. 2   Internally Associated Items 



SECTION III 

IMPLICATIONS OF PROGRAM-DESIGN DECISION 

Let us consider the implications of this kind of program-design decision. 

In place of the items of information, we now have tables or files,  as shown in 

Fig.  3.   We need Tables I, III and IV for A, Tables I, IV, and VI for B, etc. 

Now we have some insight into the table or file structure and the program 

structure for the total processing job, and we can make some estimate of file 

sizes, as shown in Fig. 4, if the user provides, for example, data giving the 

number of airfields he wishes to talk about.    Knowing what these sizes are, we 

can calculate that when Subprogram A runs, the data storage area alone that is 

required is 4, 000 plus 1, 000 plus 2, 000, or a total of 7, 000 registers of main 

memory.    Now, if we know how many instructions are required for each task 

area as given in Fig. 5, we can get a better idea of the total memory require- 

ment for each subprogram.    We can estimate fairly accurately what the total 

storage requirement for each task will be. 

We can see in Fig.  6 that the subprogram requiring the greatest number of 

words is Task D, which requires 11, 000 words.    Now suppose that the available 

machine has only 10, 000 registers of memory.    Obviously, more design work 

must be done.    It might be appropriate to keep the program the same size and 

subdivide the data, and plan on bringing the data past this program piece by 

piece.    Or, we might split Subprogram D into two equal parts, D, and D'.    Or, 

some of the small jobs of Task D might be moved out of that task and into another, 

such as Task E, which requires only 6, 000 memory registers.    Or, we could 

change the table sizes by splitting them up into pieces, half size or even smaller. 

There are many possible solutions to the problem.    It is true of all of them that, 

in addition to changing the subprogram in question, they will usually affect other 

task areas as well. 
6 
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SUBPROGRAM! 

C            D E F 
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OR 
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Fig. 3   Subprogram Tables 
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Fig. 4   Estimate of File Sizes 
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SIZE 
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DATA 
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Fig. 5   Instruction Requirements 
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WORDS 

Fig. 6   Word Requirements 



To simplify, let us suppose that the machine available has 12,000 regis- 

ters in main memory.    Thus far there is no design conflict among subprograms. 

Now, in order to proceed further in the overall design, we must consider the 

sequencing of the individual tasks.    Suppose that Task A is an input program 

which has to operate before anything else, and that Task F is an output program 

which must be the last subprogram processed.    For the other tasks there are 

only the following types of constraints:   Some tasks in B must precede D — 

there is nothing in D that must precede B.    If it had turned out that there were 

some things to be done in Task D that were logically required before B, and 

some to be done in D that were logically required after B, there would have 

been a problem, and the task breakdown would have had to be redone.    In that 

case, we might split D into two parts - one part that precedes B and one that 

follows B.    Suppose that such is not the case, however,  and that the precedence 

relations shown at the top of Fig.  7 are the logical constraints.    We see that the 

A PRECEDES ALL B   —^ D 

B PRECEDES D A   —•» D —»• F 

C PRECEDES D 8 E E 

ALL PRECEDE F 

POSSIBLE   CONTROL   SEQUENCES 

A     B    C     D     E     F 

A B C E D F 

A C B D E F 

A C B E D F 

A C E B D F 

Fig. 7   Process Sequence 



following rules of order prevail: A must precede all other tasks, F follows all 

others, B precedes D, and C precedes D and E. Given these four rules of order, 

we can derive five possible control sequences, which are shown in the lower half 

of Fig. 7. These five sequences may not all be equivalent; they may have differ- 

ent running times on the computer, or one of these sequences may be simpler 

and better for checkout, or one may be better for extension in the future. These 

differences have to be considered by the program designer. 

Suppose that we just want to investigate the first sequence - A,  B,  C,  D, 

E,  F.    Once we know the operating sequence of the task areas, the data require- 

ments, and size of each task area, it is appropriate to do a preliminary storage, 

or resource, allocation.    We shall consider only one resource, namely main 

memory, although such things as secondary storage and I/O channels must also 

be allocated and scheduled for use. 

Main memory allocations can be viewed as a two-dimensional plot, with 

time as one axis and memory cells as the other axis.   For each subprogram 

time slot, an allocation of main memory to its program and data must be chosen. 

For the example that we have been following, we already know that we can do 

this since there are 12K memory cells available and there is no subprogram that 

requires,  at least at this stage of design, more than UK.    Some of the guides 

for storage allocation in our example will be: 

(1) Internally associated data will be kept as a unit (called 
contiguous addressing) when in the main store. 

(2) An attempt will be made to move data as little as possible 
consistent with use and storage limitations. 

(3) If a data table is used by several programs, an attempt will 
be made to have it occupy the same addressed area of memory 
for all of its uses. 

10 



(4)      Where possible, data transfers will be overlapped with 
program operations; i. e. , transfers preparing for future 
program operation will take place during the operation of 
any program. 

These rules are only for guiding the solution of the simple problem 

presented by the example discussed here.    Different rules are followed for 

different systems, depending upon the complexity of the job, the time require- 

ments, and the translation and control machinery available for stating or 

executing the design.    In any case, the ultimate goal of main-memory allocation 

is to minimize the amount of nonuseful setup time for each operating program 

while keeping the overhead on-line structure both small and short in operating 

time.    In order to do this, the allocation must be easy to modify and must allow 

debugging to proceed, i. e. , additional tools may be needed for each level of 

sophistication in a storage allocation.    A truly dynamic allocation will require 

different translators and larger amounts of overhead machinery on-line, 

especially for debugging,  operational testing, monitoring,  and recovery. 

To return to the sample program, one of the many possible memory 

layouts is given in Fig.  8.    The size of the overlay problem in this example is 

small.    The total system is estimated (see Fig.  6) to require some 24. 5K 

registers,  and the main memory available is 12K,  resulting in an overlay factor 

of only 2:1.    The original SAGE program, on the other hand, had an overlay 

factor of about 15:1 with a main memory of 8K words. 

Figure 8 shows that there are several tables that do not move during 

program operation.    In an operational military system, portions of the data may 

sometimes have to be saved after program operation in order to allow recovery 

should normal operation become interrupted,  e. g. , because of power failure, 

program error, machine error,  or scheduled stoppage.    Thus, for those con- 

siderations this design may be inadequate.   In the design presented here, 

11 
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Fig. 8   Dynamic Memory Allocation 

however, it is assumed that it is not necessary to save a program after its 

operation.    It is assumed that programs create their cycle-to-cycle memory in 

isolable tables of the system and thus have no persistent internal memory. 

Because of this characteristic, normal initialization procedures may be im- 

bedded in the steady state of the code and therefore are not required at the start 

of each operation. 

Having settled on a storage allocation, we must next derive an I/O schedule 

that will accomplish the program transfers required for creating the appropriate 

environment for each program unit.    For the example given here,  this involves 

transfer immediately prior to operation, and the alternate saving and restoration 

of Tables I and V in the appropriate storage area.    In more realistic systems, 

such control of I/O and the sequencing operation is done by a central executive 

that may have many more duties than that of program-environment control. 

12 



It is at this point that the program designer can attempt to estimate the 

running time of a cycle of the operational program for the particular machine 

configuration he is concerned with.    However, even at this point in program 

design, obtaining accurate size estimates of the subprograms involved is a 

major problem, and estimating the running time of subprograms whose most 

frequently operated instruction next to a load accumulator is a conditional branch, 

is extremely difficult.    Therefore, it is evident that final design decisions must 

be delayed until later in the fabrication cycle.    Tools, procedures,  and early 

design decisions giving the gross structure of the program must be made with 

an appreciation of this essential fact. 

The kind of general program design that has been described here, and its 

accompanying tools,  are required not only because of the needs inherent in the 

fabrication of the first operational program, but also because of the inescapable 

fact that the specifics of the operational system and thus its program will demand 

changes as it is used and as changes take place in the operational environment. 

By now all programmers, whether they are working in the military, commer- 

cial, or scientific disciplines, or even for themselves, have become aware of 

the results of pursuing thoughts along the line of "Wouldn't it be nice if.... " 

Changes that seem simple from the point of view of external logic can be 

catastrophic in relation to the internal structure of the program, just because of 

the effect on the design decisions that we have briefly reviewed.    Changes 

frequently affect many of the subprogram areas. 

Therefore, those about to embark on a program design for a large on-line 

system should heed   the following warning:   Do not attempt such an enterprise 

with fewer automated aids for construction, checkout,  and maintenance than are 

taken as a matter of course by the programmer of a small system.    Add,  as a 

corollary to this warning, that large real-time programs require new tools in 

13 



order to handle the production task adequately.    This requirement is due partly 

to the problems of size and partly to the conflicting philosophies that exist in 

regard to storage allocation between the standard operating system and the 

translator of the programming language being used. 

14 



SECTION IV 

CONSTRUCTION TOOLS USED FOR ON-LINE SYSTEMS 

In order to isolate the produced code and thus the individual  programmer 

from certain design decisions, three innovations (time period 1955-56) were 

made in the program production and the operational design of the SAGE System. 

The first of these was the use, for the operational program, of a table-driven 

central executive program to control the sequencing and I/O flow of the entire 

program.    The tables involved were called the sequence parameters and were 

mainly a reflection of the changing but, from an on-line point of view,  static 

design decisions.    Dynamic conditionality indicators could be set for the opera- 

tion of specific subprograms.    This arrangement made it possible to effect,  only 

when required, the transfer of appropriate operating environments for the 

conditional subprograms.    In addition,  certain tables could, within limits, be 

dynamic in size, and they were to be transferred and used with their actual size 

taken into account.    The second innovation was the accumulation in a central 

bookkeeping table, referred to as the communication pool (COMPOOL), of 

certain descriptive information about the data and the subprograms of the opera- 

tional system.    The third innovation was the insertion into the operational system 

of a data- or storage-recording system that could, before or after any 

subprogram, record any of the storage regions of the system.    This program 

was table-driven and set dynamically or before test operation.    It could handle 

any reasonable amount of recording.    Care must be taken in the use of such a 

recording system not to influence the very phenomena that are to be observed by 

changing the time of the system beyond reasonable bounds.    This is especially 

important in operations using live inputs. 

15 



In order to code using the production tools available, the programmer of 

SAGE had to know what functions his subprogram had to perform, the system 

symbols of the data elements he required, whether or not the data was part of an 

array, the indexing quantity used for entry into the array, the coding (i. e. , the 

specific numeric values and their meaning) of the data elements, and the symbol 

and entry parameters of any required system subroutines.    He did not have to 

know the location of his program in core or backing store, the packing of the 

data elements, the association of the data elements into tables, or the location 

of the data elements in core or backing store—in fact,  it was the intent of the 

program-production managers to withhold such information from the individual 

programmers. 

The transformation of the symbolic code into machine code was a two-stage 

process.    First, there was the compile or assembly stage, which produced,  in 

addition to such things as a relative and allocatable binary code and a local 

symbol table, a list of subprogram requirements from a data-element and sub- 

routine point of view.    The data elements were listed according to whether they 

were used only, modified only, or both used and modified.    Such a list not only 

helped verify programmers' statements of data and subroutine requirements but 

was very useful in checking out the overall system program. 

The first stage of translation is sketched in Fig. 9.    At this point,  the only 

information needed from the COMPOOL is the relative location of each system 

symbol in a master list or lists. 

The second stage of translation is normally called loading.    At this point 

the programmer entered his output from the compiler, namely his symbol table 

and his relative binary deck.    (In addition, he could add corrections in the 

program in terms of his local symbols and system symbols.)   To perform this 

operation, the loader used the COMPOOL to determine the operating core 

16 



COMPOOL 

SYSTEM DATA AND 
PROGRAM  DESCRIPTION 

SYSTEM SYMBOL 
RELATIVE  LOCATION 

" PROGRAM REQUIREMENTS 

PROGRAM 
CODE 

COMPILER 
LOCAL SYMBOL  TABLE 

RELATIVE  AND 
ALLOCATABLE   CODE 

Fig. 9   First Stage of Translation—Compiling 

address of the program, the location of the system subroutines called upon by 

the program for each data element referred to, the table in which it was located, 

the base address of that table in core, the mask needed to extract the data ele- 

ment from storage or deposit it into storage, the shift required to position the 

data element for testing or computation, and the shift required to restore the 

data element to the appropriate position for storing.    After transforming the 

relative and allocatable code to absolute by the appropriate substitution of 

derived numbers, the loader would store the code in the appropriate place in 

backing store, leave it in its operating core position, or both.    In addition, 

required system subroutines could be loaded. 

It is apparent that most of the resource-allocation decisions that were 

found to be difficult to derive in the preliminary stages of program design are 

not used in the code translation until the load,  or read-in, phase.    Therefore, 

17 



such decisions can be made and changed without affecting the source code or the 

output of the first stage of translation, the compile phase. The loading process 

is shown in Fig.  10. 

COMPOOL 

SYSTEM  SYMBOL 
RELATIVE   LOCATION 

SYSTEM DATA AND 
PROGRAM DESCRIPTION 

LOCAL   SYMBOL   TABLE 

RELATIVE   AND 
ALLOCATABLE   CODE 

PROGRAM CHANGES 

FINAL STAGE 
TRANSLATOR 
AND  LOADER 

LOADED 
ABSOLUTE 

"     CODE 

Fig.  10   Second Stage of Translation—Loading 

During the initial phases of subprogram checkout it is not essential that 

the system data and program description in the COMPOOL be complete or up to 

date; it is necessary only that it be adequate for specific subprograms in check- 

out.    There is no logical reason why there cannot be a separate description for 

each subprogram or why the one used cannot be inconsistent from an overall- 

system point of view if it is adequate for each subprogram.   However, it would 

be difficult to check out a subprogram with the tools described so far,  since 

there is no way to introduce values into the data elements referred to by a 

specific subprogram.    Such a simple tool can easily be constructed.    The 

information needed exists in the COMPOOL, and, therefore,  simulation data 

can be produced for loading with the program,  as illustrated in Fig.  11. 

18 
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Fig.  11    Simulation-Data Producti on 

In addition, it is necessary to produce a debug-control routine that accepts 

control statements in local- and/or system-form and controls code execution and 

recording during a checkout run.   A flow diagram of the operation of such an 

execution is given in Fig.  12.    The flow shown is idealized and does not represent 

any specific tool used in the production of SAGE, although it does characterize 

the effect  of several tools used.    Making the output of such a run available to the 

programmer would require a translator to change selected aspects of the re- 

corded data into data-element values, local symbols, or system symbols for 

output to a printer.    Such a phase is sketched in Fig.  13. 

Such a debugging tool allows detailed checking of each subprogram.    For 

system checking,  or "assembly testing, " as it is called in SAGE terms,  new but 

similar procedures were used.    In system tests, provision must be made for 

continuous or intermittent entry of exogenous data.    Usually these data are 

L9 



SIMULATED 
DATA 

TABLES 

RELATIVE  AND 
ALLOCATABLE 

CODE 

LOCAL 
SYMBOL TABLE 

DEBUG 
CONTROL 

STATEMENTS 

J_ 

ABSOLUTE 
DATA  AND 

CODE 

LOCAL 
SYMBOL TABLE 

COMPOOL DEBUG 
TRANSLATOR 

MODIFIED 
ABSOLUTE 

CODE AND DATA 

DEBUG 
EXECUTIVE 

CONTROL 
TABLES 

DEBUG 

RECORDING 

DATA AND 
CODE 

LOCAL 
SYMBOL TABLE 

COM POOL 

CONTROL 
STATEMENTS 

Fig. 12   Debug-Run Flow 

DEBUG 

RECORDING 

TAPE 

OUTPUT 

CONTROL 

STATEMENTS 

DEBUG 

TRANSLATOR 

PRINTED 

OUTPUT   IN 

SYMBOLIC FORM 

Fig.  13   Recorded-Data Translation 
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simulated and entered from tape,  although real data can be used for noncontrolled 

but "realistic" inputs.    This procedure is diagrammed in Fig.  14. 
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Fig.  14   Assembly Testing 
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SECTION V 

CONCLUSIONS 

Some time has been spent here in reviewing the program-design process 

and the tools required to defer some critical design decisions.    This is only to 

illustrate that the major design decisions have little relation to the programming 

language chosen for the statement of the logical data transformations to be im- 

plemented by the final program.    The actual coding required for performing the 

logical transformations turns out to be a relatively small part of the overall 

design job.    On the basis of his own experience, the author feels that the choice 

of the programming language to be used is just an initial decision in the process 

of selecting adequate tools for assisting the production and modification of 

real-time programs. 
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